Artificial Intelligence Techniques for river flow forecasting in the Seyhan River Catchment, Turkey

نویسنده

  • M. Firat
چکیده

The use of Artificial Intelligence methods is becoming increasingly common in the modeling and forecasting of hydrological and water resource processes. In this study, applicability of Adaptive Neuro Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN) methods, Generalized Regression Neural Networks (GRNN) and Feed 5 Forward Neural Networks (FFNN), for forecasting of daily river flow is investigated and the Seyhan catchment, located in the south of Turkey, is chosen as a case study. Totally, 5114 daily river flow data are obtained from river flow gauges station of Üçtepe (1818) on Seyhan River between the years 1986 and 2000. The data set are divided into three subgroups, training, testing and verification. The training and testing data 10 set include totally 5114 daily river flow data and the number of verification data points is 731. The river flow forecasting models having various input structures are trained and tested to investigate the applicability of ANFIS and ANN methods. The results of ANFIS, GRNN and FFNN models for both training and testing are evaluated and the best fit forecasting model structure and method is determined according to criteria of 15 performance evaluation. The best fit model is also trained and tested by traditional statistical methods and the performances of all models are compared in order to get more effective evaluation. Moreover ANFIS, GRNN and FFNN models are also verified by verification data set including 731 daily river flow data at the time period 1998–2000 and the results of models are compared. The results demonstrate that ANFIS model is 20 superior to the GRNN and FFNN forecasting models, and ANFIS can be successfully applied and provide high accuracy and reliability for daily River flow forecasting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Age and growth of Capoeta erhani Turan, Kottelat and Ekmekçi, 2008 from the Seyhan River (Southeast of Turkey)

Capoeta erhani is an endemic species to Southeast of Turkey. To date the information on biology of this species from inland waters of Turkey is very limited. The present study aims to provide the basic age and growth parameters of C. erhani from the middle basin of the Seyhan River. In total, 255 individuals were collected seasonally between October 2013 and September 2014. The overall sex rati...

متن کامل

Flood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique

Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...

متن کامل

A hybrid artificial intelligence model for river flow forecasting

A hybrid hydrologic estimation model is presented with the aim of performing accurate river flow forecasts without the need of using prior knowledge from the experts in the field. The problem of predicting stream flows is a non-trivial task because the various physical mechanisms governing the river flow dynamics act on a wide range of temporal and spatial scales and almost all the mechanisms i...

متن کامل

Age and growth of Capoeta erhani Turan, Kottelat and Ekmekçi, 2008 from the Seyhan River (Southeast of Turkey)

Capoeta erhani is an endemic species to Southeast of Turkey. To date the information on biology of this species from inland waters of Turkey is very limited. The present study aims to provide the basic age and growth parameters of C. erhani from the middle basin of the Seyhan River. In total, 255 individuals were collected seasonally between October 2013 and September 2014. The overall sex rati...

متن کامل

بررسی کاربرد مدل‌های هوش محاسباتی در شبیه سازی و پیش بینی بهنگام جریان‌های سیلابی

The potential of artificial neural network models for simulating the hydrologic behaviour of catchments is presented in this paper. The main purpose is the modeling of river flow in a multi-gauging station catchment and real time prediction of peak flow downstream. The study area covers the Upper Derwent River catchment located in River Trent basin. The river flow has been predicted (at Whatsta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007